Siempre hay sitio para la optimización

La optimización del código que se ejecuta en nuestros programas es un tema clave (y con el que hay que tener cuidado sobre todo antes de tiempo).
Por eso me gustó leer A Python Optimization Anecdote donde nos cuentan los pasos seguidos para mejorar una función para evitar Cross-Sie scripting en Dropbox.

En resumen: probar, medir (y para eso hay que tener casos de prueba *nuestras pruebas, nuestros datos*) y ver cómo afecta a nuestro código con nuestros datos los cambios que hagamos:

Conclusions
The first, most basic conclusion is that the basic facts of Python
optimization inline functions, use implicit loops, move computation into C
if possible are perfectly valid. Another fact: Python dictionaries are
*fast*. The WHITELIST set and the CACHE_HTML_ESCAPES dict both rely on the
superb hash table implementation for their performance gains.

Other “common wisdom”, like using locals instead of globals, yields
relatively little gain.

Optimizing inner loops in a high-level loops requires lots of trial and
error. It was absolutely amazing that moving to string concatenation from
string interpolation gave such a huge boost to performance.

Finally, measurement is key. It was measurement that told us that HTML
escaping was slow to begin with; and without measuring performance, we
would never have guessed that string interpolation was so slow.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s